Object recognition

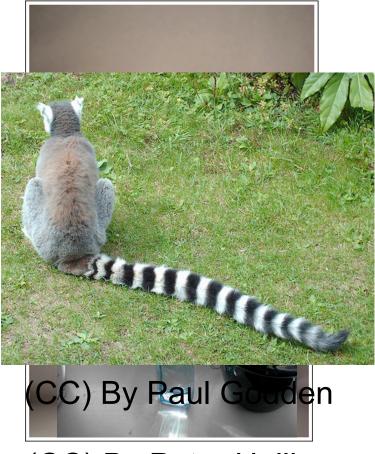
Methods for classification and image representation

Credits

- Slides by Pete Barnum
- Slides by Fei-Fei Li
- Paul Viola, Michael Jones, Robust Real-time Object Detection, IJCV 04
- Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
- Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell, Virtual Visual Hulls: Example-Based 3D Shape Inference from Silhouettes
- S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.
- Yoav Freund Robert E. Schapire, A Short Introduction to Boosting

Object recognition

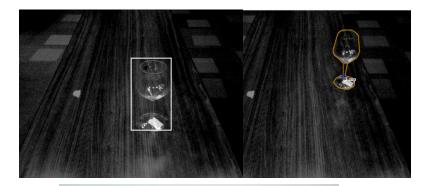
- What is it?
 - Instance
 - Category
 - Something with a tail
- Where is it?
 - Localization
 - Segmentation
- How many are there?



(CC) By Peter Hellberg

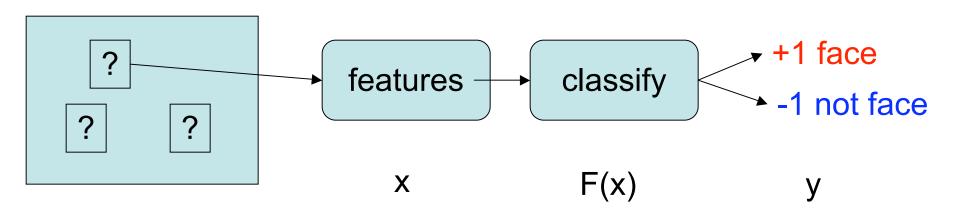
Object recognition

- What is it?
 - Instance
 - Category
 - Something with a tail
- Where is it?
 - Localization
 - Segmentation
- How many are there?



(CC) By Dunechaser

Face detection

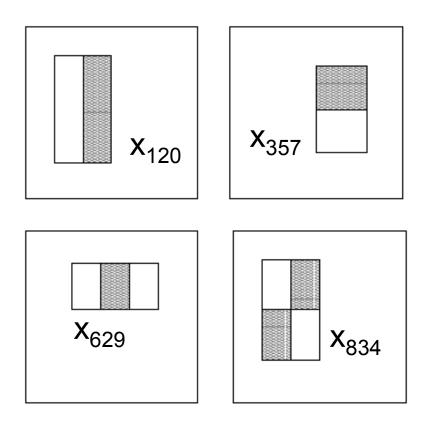


- We slide a window over the image
- Extract features for each window
- Classify each window into face/non-face

What is a face?

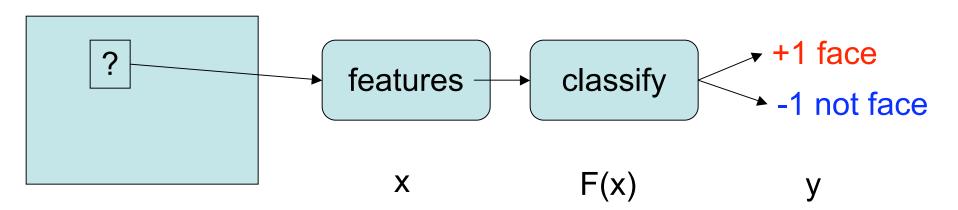
- Eyes are dark (eyebrows+shadows)
- Cheeks and forehead are bright.
- Nose is bright

Basic feature extraction



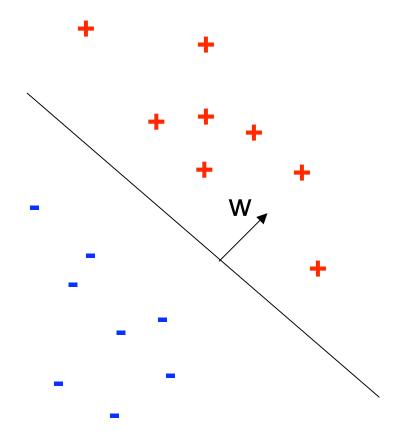
- Information type:
 - intensity
- Sum over:
 - gray and white rectangles
- Output: gray-white
- Separate output value for
 - Each type
 - Each scale
 - Each position in the window
- FEX(im)=x=[x₁,x₂,....,x_n]

Face detection



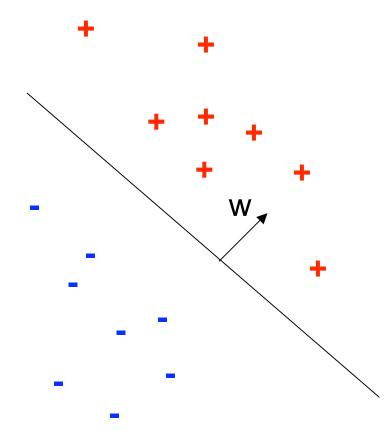
- We slide a window over the image
- Extract features for each window
- Classify each window into face/non-face

Classification



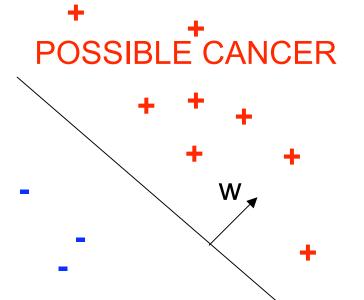
- Examples are points in Rⁿ
- Positives are separated from negatives by the hyperplane w

Classification



- $x \in \mathbb{R}^n$ data points
- P(x) distribution of the data
- y(x) true value of y for each x
- F decision function: y=F(x, θ)
- θ parameters of F, e.g. θ=(w,b)
- We want F that makes few mistakes

Loss function



- Our decision may have severe implications
- L(y(x),F(x, θ)) loss function How much we pay for predicting F(x,θ), when the true value is y(x)
- Classification error:

ABSOLUTELY NO $L(y(x), F(x, \theta)) = \{ \begin{array}{ll} 0, & y(x) = sign(w^T x - b) \\ 1, & otherwise \end{array} \}$

Hinge loss

 $L(y(x),F(x,\theta)) = max(0,1-y(x)F(x,\theta))$

Learning

- Total loss shows how good a function (F, θ) is: $L(f) = \int_x L(y, F(x)) P(x) dx$
- Learning is to find a function to minimize the loss:

$$(F, \theta) = \operatorname*{arg\,min}_{F, \theta} \int_{x} L(y, F(x, \theta)) P(x) dx$$

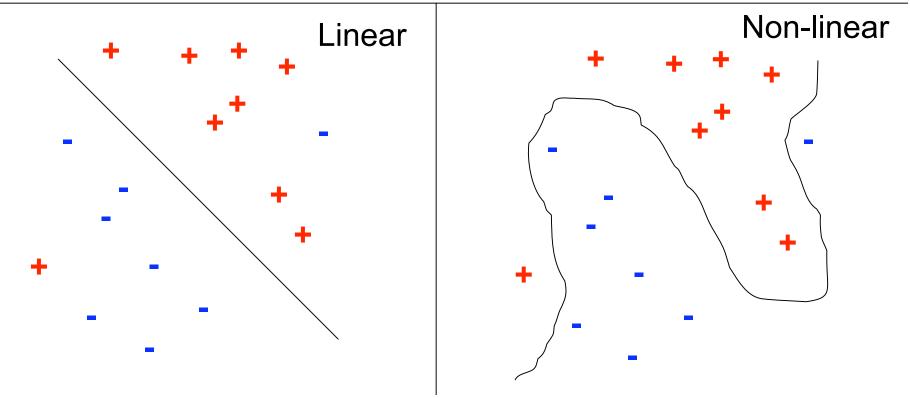
• How can we see all possible x?

Datasets

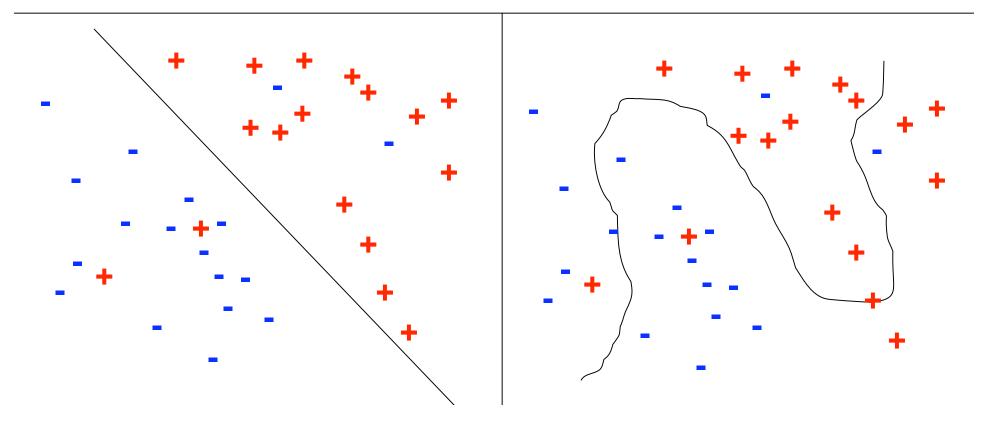
- Dataset is a finite sample {x_i} from P(x)
- Dataset has labels {(x_i,y_i)}
- Datasets today are big to ensure the sampling is fair

	#images	#classes	#instances
Caltech 256	30608	256	30608
Pascal VOC	4340	20	10363
LabelMe	176975	???	414687

- A simple dataset.
- Two models

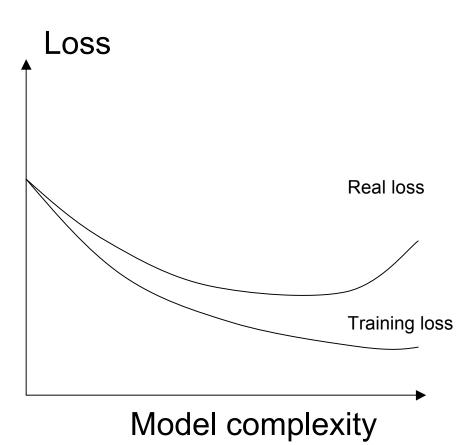


- Let's get more data.
- Simple model has better generalization.

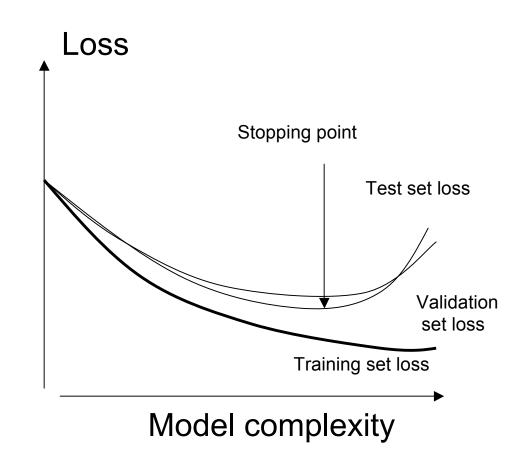


- As complexity increases, the model overfits the data
- Training loss
 decreases
- Real loss increases
- We need to penalize model complexity

 to regularize



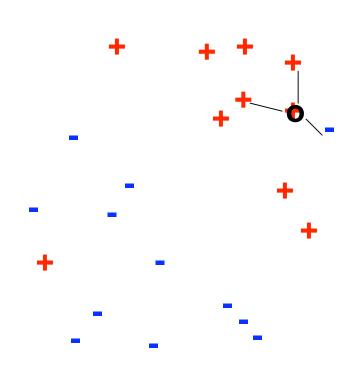
- Split the dataset
 - Training set
 - Validation set
 - Test set
- Use training set to optimize model parameters
- Use validation test to choose the best model
- Use test set only to measure the expected loss



Classification methods

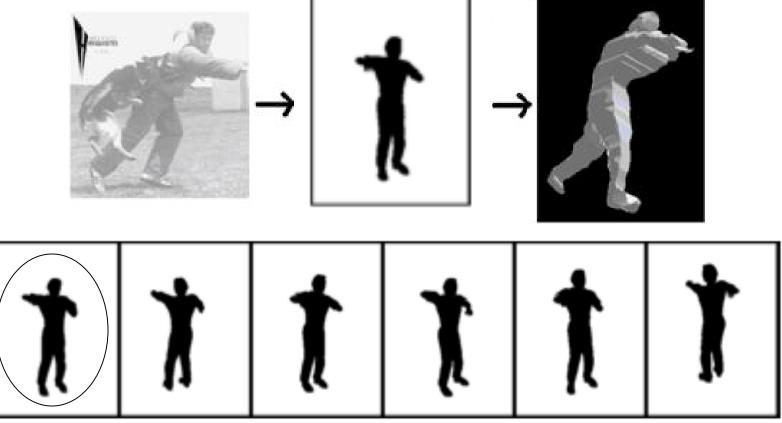
- K Nearest Neighbors
- Decision Trees
- Linear SVMs
- Kernel SVMs
- Boosted classifiers

K Nearest Neighbors



- Memorize all training data
- Find K closest points to the query
- The neighbors vote for the label: Vote(+)=2
 - Vote(-)=1

K-Nearest Neighbors

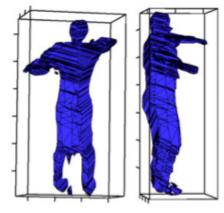


Nearest Neighbors (silhouettes)

Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell, Virtual Visual Hulls: Example-Based 3D Shape Inference from Silhouettes

K-Nearest Neighbors

Silhouettes from other views

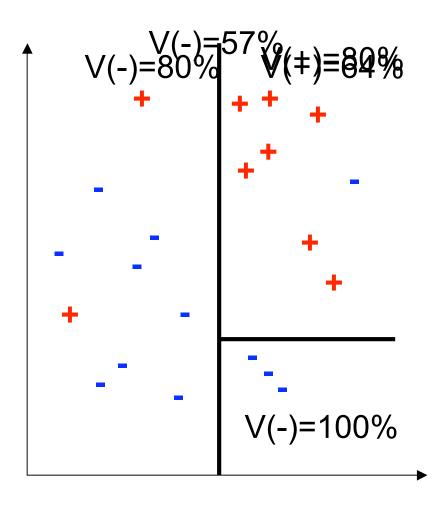


3D Visual hull

Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell, Virtual Visual Hulls: Example-Based 3D Shape Inference from Silhouettes

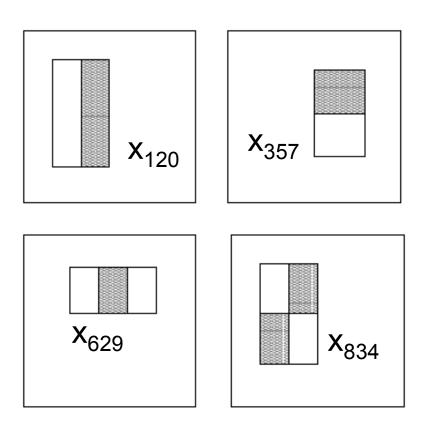
Decision tree No Yes (X₁>2) V(+)=8 0 No V(+)=2 Yes X₂>1 V(-)=8 V(-)=8 V(+)=0 V(+)=8 V(-)=4 V(-)=2 V(-)=4

Decision Tree Training



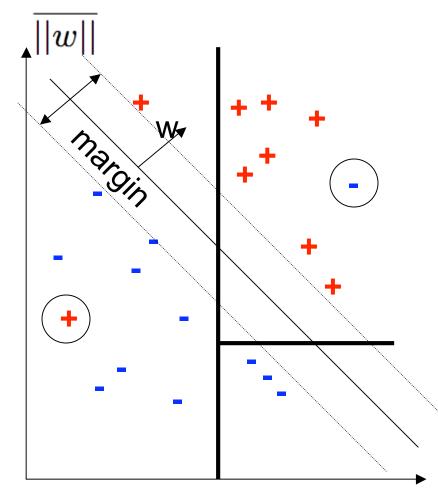
- Partition data into pure chunks
- Find a good rule
- Split the training data
 - Build left tree
 - Build right tree
- Count the examples in the leaves to get the votes: V(+), V(-)
- Stop when
 - Purity is high
 - Data size is small
 - At fixed level

Decision trees

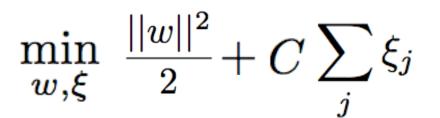


- Stump:
 - 1 root
 - 2 leaves
- If x_i > a then positive else negative
- Very simple
- "Weak classifier"

Support vector machines



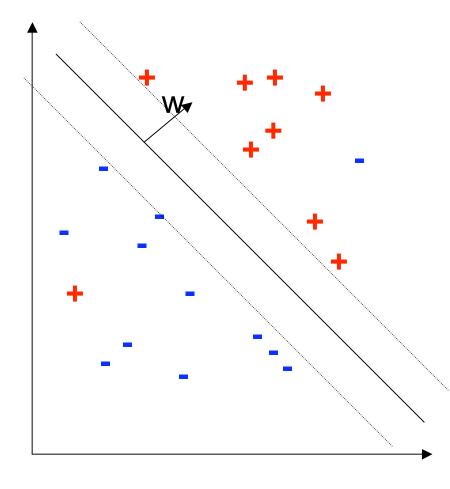
- Simple decision
- Good classification
- Good generalization



 $y_j w^T x_j \ge 1 - \xi_j$

 $\xi_j \ge 0$

Support vector machines



$$\min_{w,\xi} \frac{||w||^2}{2} + C \sum_j \xi_j$$

$$y_j w^T x_j \ge 1 - \xi_j$$

 $\xi_j \ge 0$

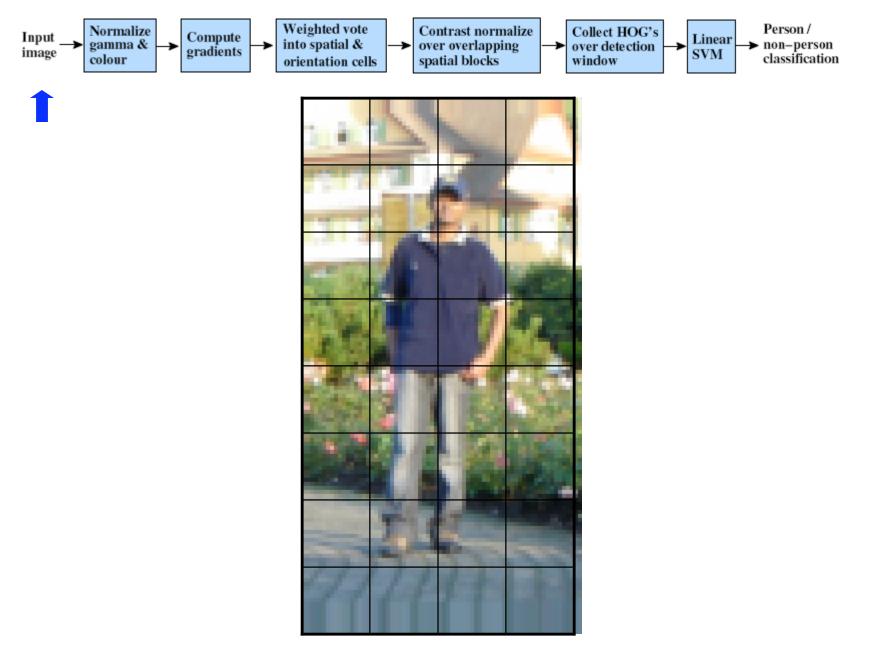
Support vectors:

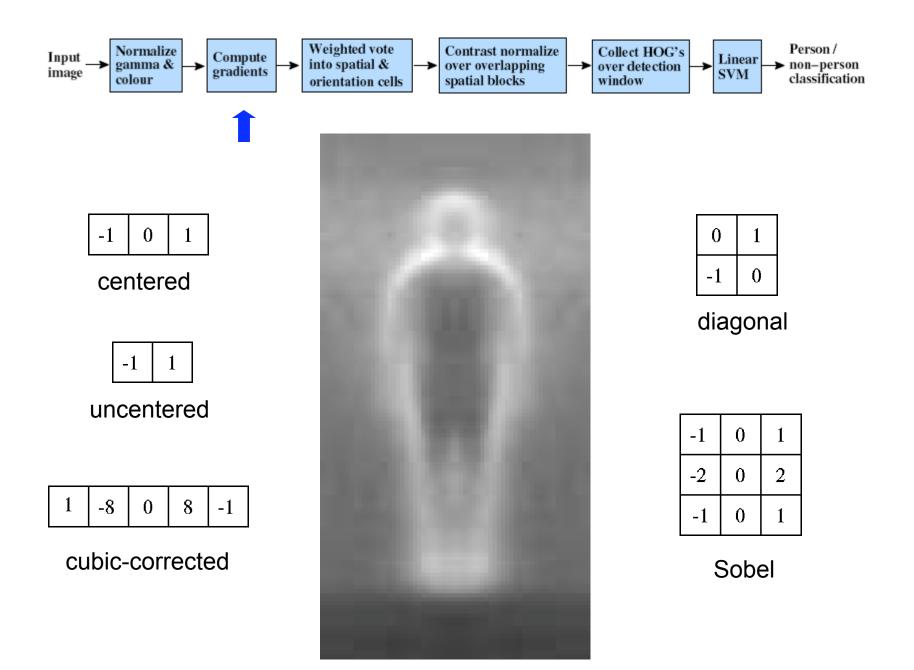
$$w = \sum_{x_i - s.v.} \alpha_i x_i$$

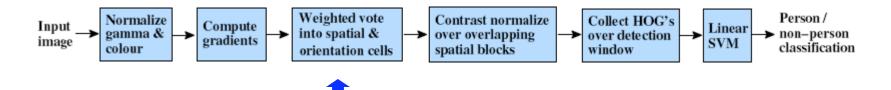
How do I solve the problem?

- It's a convex optimization problem
 - Can solve in Matlab (don't)
- Download from the web
 - SMO: Sequential Minimal Optimization
 - SVM-Light http://svmlight.joachims.org/
 - LibSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - LibLinear http://www.csie.ntu.edu.tw/~cjlin/liblinear/
 - SVM-Perf http://svmlight.joachims.org/
 - Pegasos http://ttic.uchicago.edu/~shai/

Linear SVM for pedestrian detection

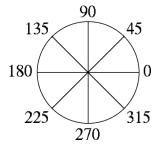


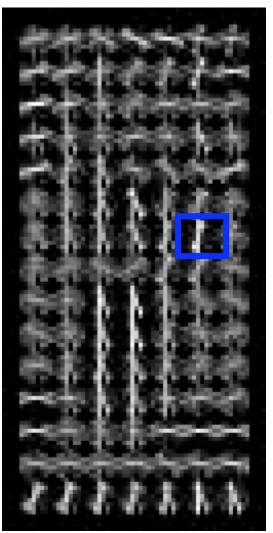


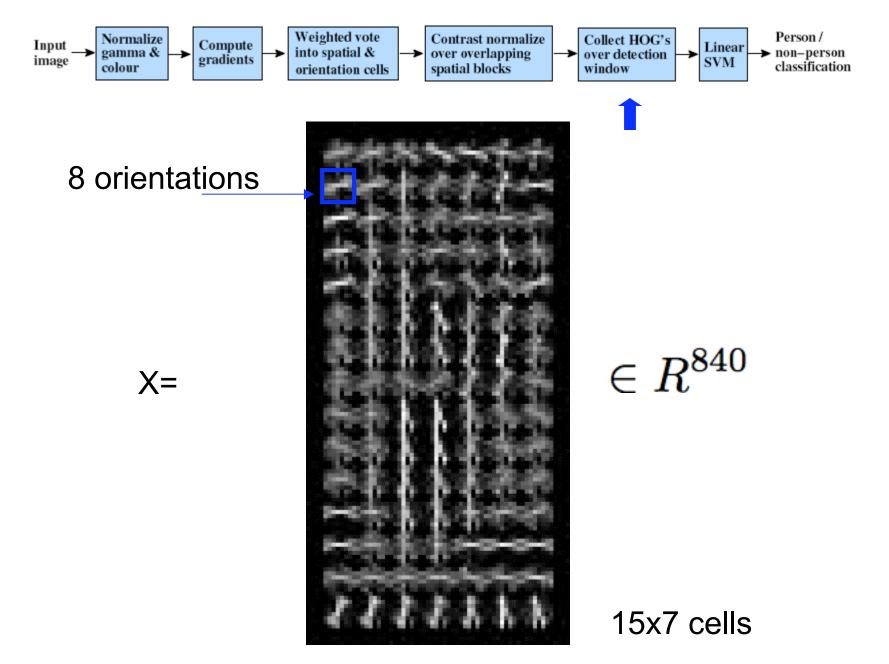


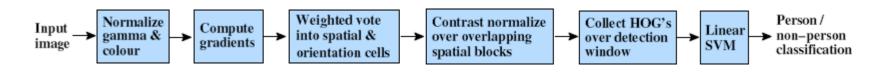
Histogram of gradient orientations

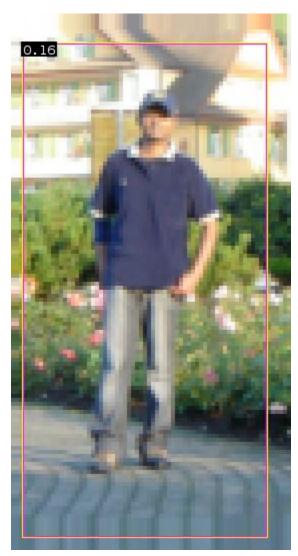
-Orientation











 $0.16 = w^T x - b$

sign(0.16) = 1

=> pedestrian

Kernel SVM

Decision function is a linear combination of support vectors:

$$w = \sum_{x_i - s.v.} \alpha_i x_i$$

Prediction is a dot product:

$$(w,x) = \sum_{x_i \in \mathcal{X}} \alpha_i(x_i,x)$$

Kernel is a function that computes the dot product of data points in some unknown space:

$$(\Psi(x_i), \Psi(x)) = K(x_i, x)$$

We can compute the decision without knowing the space:

$$(w, \Psi(x)) = \sum_{x_i - s.v.} \alpha_i K(x_i, x)$$

Useful kernels

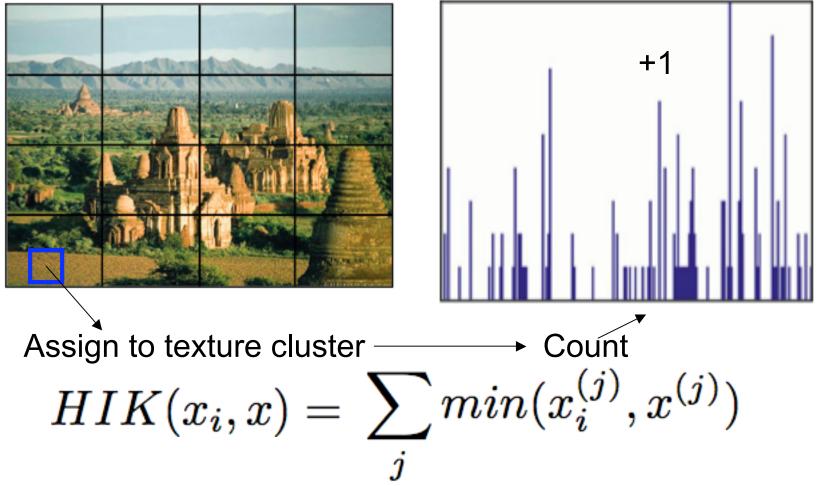
 $K(x_i, x) =$

- Linear! (x_i, x)
- RBF $exp(-||x_i x||^2/2\sigma^2)$
- Histogram intersection

$$\sum_{j} \min(x_i^{(j)}, x^{(j)})$$

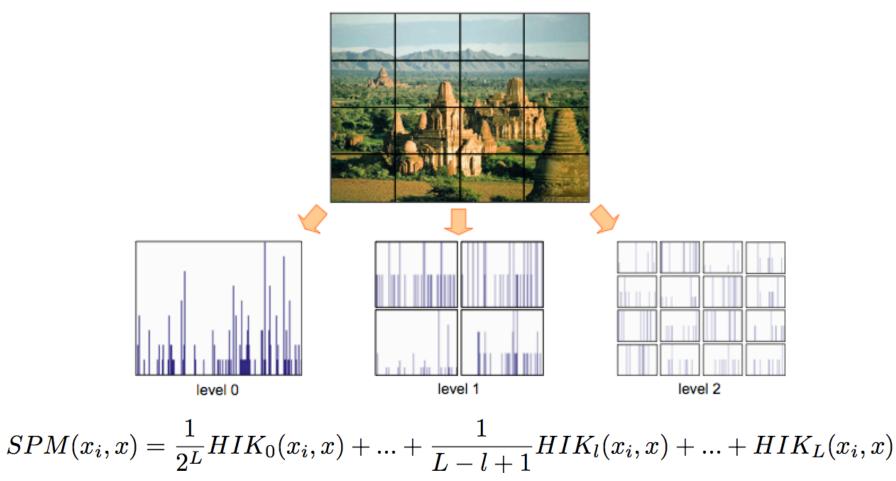
• Pyramid match

Histogram intersection



S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.

(Spatial) Pyramid Match



S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.

Boosting

$$L(x, F(x)) = \{ \begin{array}{ll} 0, & y(x) = F(x) \\ 1, & otherwise \end{array}$$

$$Err(F, P(x)) = \int_{P(x)} P(x)L(x, F(x)) \approx \sum_{x_j} p_j L(x_j, F(x_j))$$

Weak classifier

Classifier that is slightly better than random guessing

$$Err(f, P(x)) \neq \frac{1}{2}$$

• Weak learner builds weak classifiers $\forall P(x) \mid \{y_i, P(x_i)\} \rightarrow WL \rightarrow f$

Boosting

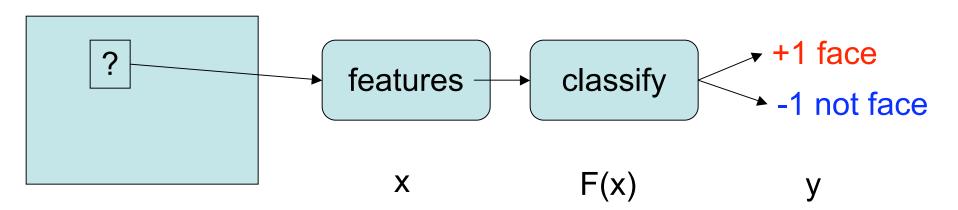
- Start with uniform distribution
- Iterate:
 - 1. Get a weak classifier f_k
 - 2. Compute it's 0-1 error
 - 3. Take
 - 4. Update distribution
- Output the final "strong" classifier

$$(x_i, y_i), \ p_i^{k=1} = 1/N$$

$$\begin{aligned} \epsilon_k &= \sum_{x_i} p_i L(x_i, f_k(x_i)) \\ \alpha_k &= \frac{1}{2} \ln(\frac{1 - \epsilon_k}{\epsilon_k}) \\ p_i^{k+1} &= \frac{p_i^k exp(-\alpha_k y_i f_k(x_i))}{Z_{k+1}} \\ F(x) &= sign(\sum_k \alpha_k f_k(x)) \end{aligned}$$

Yoav Freund Robert E. Schapire, A Short Introduction to Boosting

Face detection



- We slide a window over the image
- Extract features for each window
- Classify each window into face/non-face

Face detection

- Use haar-like features
- Use decision stumps
 as week classifiers
- Use boosting to build a strong classifier
- Use sliding window to detect the face

